

Experimental Section

Melting points were taken with a Mel-Temp apparatus and are uncorrected.

Z-Phe- γ -tert-Bu-Glu-Ala-Gly-OMe (2).‡—To a soln of 15.1 g (27.6 mmole) of Z-Phe pentachlorophenyl ester in 200 ml of CH₂Cl₂ was added 10.5 g (27.6 mmoles) of γ -tert-Bu-Glu-Ala-Gly Me ester HCl and 3.0 g (30 mmoles) of Et₃N. The mixt was stirred overnight at room temp and concd, and the product was dissolved in EtOAc, washed with 10% citric acid soln and H₂O, and then dried (Na₂SO₄) and concd *in vacuo* to give the product as an oil. This material was chromatog on a column of Silicar CC-7 using CHCl₃-EtOAc (1:1) as eluent, to give the fully blocked tetrapeptide; crystn from EtOAc-hexane yielded 13.5 g (78.5%): mp 183-185°, $[\alpha]^{24}$ D -12.5° (c 2.69, DMF). Anal. (C₂₂H₄₂N₄O₉) C, H, N.

Z-Phe- γ -tert-Bu-Glu-Ala-Gly Pentachlorophenyl Ester (3).— To a soln of 12.9 g (20.6 mmoles) of the fully blocked tetrapeptide 2 in 150 ml of MeOH was added 21 ml of 1 N NaOH and the soln was stirred for 90 min and then concd under reduced pressure. The residue was flooded with H₂O, acidified with 10% citric acid soln, and extd into EtOAc. The EtOAc soln was dried (Na₂SO₄) and concd under reduced pressure to give the tetrapeptide free acid as a solid; yield 12.6 g (100%). To this material in 90 ml of DMF was added 5.5 g (20.6 mmoles) of pentachlorophenol and 9.6 g (22.6 mmoles) of 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-*p*-toluenesulfonate. The mixt was stirred overnight at room temp. The reaction mixt was added to 400 ml of H₂O and the solid material was collected, washed with H₂O, and crystd from MeOH to yield 7.2 g (40.5%): mp 202-203°, [a]²⁸D -14.5° (c 5.59, DMF). Anal. (C₃₇H₃₉-Cl₅N₄O₉) C, H, N.

Phe- γ -tert-**Bu-Glu-Ala-Gly Pentachlorophenyl Ester** HCl (4). —A soln of 7.1 g (8.24 mmoles) of the tetrapeptide active ester **3** in 100 ml of MeOH was added to 0.8 g of 10% Pd/C. To this was added 8.25 ml of MeOH contg 0.30 g (8.24 mmoles) of dry HCl, and the mixt was hydrogenated for 2 hr. The reaction mixt was filtered, and the filtrate was concd to give a solid which was washed with Et₂O to yield 5.5 g (87.5%): mp 220°. [α]²⁶D 4.25° (c 4.7, DMF). Anal. (C₂₉H₃₄Cl₆N₄O₇) C, H, N.

Poly(**Phe-Glu-Ala-Gly**)**Gly**-1-¹⁴C **Et Ester** (1).—To a soln of 1.0 mg of glycine-1-¹⁴C Et ester HCl (spec activity nCi/ mmole) and 1.39 g (13.7 mmoles) of Et₃N in 5 ml of DMSO was added slowly a soln of 3.0 g (4.06 mmoles) of the polymerizing unit 4 in 34 ml of DMSO. The reaction mixt was shaken for 3 days at room temp and then centrifuged to yield the polymer which was washed with three 35-ml portions of H₂O and three 35-ml portions of Et₂O and dried to give the fully blocked polymer. This material was dissolved in 50 ml of 90% F₃CCO₂H and stirred for 50 min, and then concd under reduced pressure to yield the crude polypeptide 1. This material was suspended in 40 ml of H₂O and dissolved by the addn of 4 N NaOH to pH 7.5. The soln was dialyzed against distd H₂O for 15 hr and then lyophilized to yield the Na salt of the polymer. This material was acidified to pH 2.5 with 6 N HCl in order to convert it to the free acid and dialyzed, with frequent changes of H₂O for 2 days. The free polypeptide 1 was obtained by lyophilization to yield 0.7 g (41%). Anal. (C₁₉H₂₄N₄O₆·H₂O) C, H, N. Molecular Weight Determination.—A calibrated column of

Molecular Weight Determination.—A calibrated column of Sephadex G-50 (2.5 \times 38.0 cm) was employed for the mol wt detn. Using 0.15 *M* NaCl as eluent, 4 mg of the Na salt of poly(Phe-Glu-Ala-Gly)Gly-1-1⁴*C* Et ester was passed through it and the polypeptide was eluted in a vol equiv to that corresponding to a mol wt of 1 \times 10⁴.

Immunochemical Results.—Two rabbits were treated at weekly intervals with 500 μ g of poly(Phe-Glu-Ala-Gly)Gly-1-14C Et ester 1. The first 2 weeks they were injected intradermally using complete Freunds adjuvant as suspension medium and the 3rd week they were injected sc. The injection on the 4th week was done iv using buffered saline. Bleedings were conducted on the following week and the serum from one animal gave a precipitin reaction with polymer 1 as shown in Figure 1.

Acknowledgments.—This work was supported by a grant from the National Science Foundation.

Synthesis and Reactions of Some Pyrrolidinediones

JAYSUKHLAL R. MERCHANT,* MEHMOOD A. HAKIM, KUTTEN S. PILLAY, AND JIMMY R. PATELL

Institute of Science, Bombay-32, India

Received May 14, 1971

The present paper describes the synthesis and reactions of some new 2,3-, 2,4-, and 3,4-pyrrolidinediones. A number of 2,3-pyrrolidinediones are known,^{1.2} and some of the new derivatives were found to possess an antimicrobial activity in preliminary screening tests. Their synthesis was carried out by the condensation of oxalacetic ester and phenylpyruvic acid and derivatives, as well as ethyl ethoxalylpropionate with different aldehydes and amines (Table I). The yields ranged from 30 to 60%.

2,3-Pyrrolidinediones derived from phenylpyruvic acid failed to give a phenylhydrazone, an oxime, or an anil derivative and were recovered unchanged.

Attempts to prepare some 4-benzyl-2,3-pyrrolidinediones by the condensation of benzylpyruvic acid with different aldehydes and amines were unsuccessful. However, a 4-benzyl-2,3-pyrrolidinedione was prepared by condensing 2 with PhCHO in dil HCl soln to give the corresponding benzylidene derivative which was reduced with NaBH₄ to the required 4-benzyl-2,3-pyrrolidinedione.

W. R. Vaughan and W. L. Meyer, J. Org. Chem., 22, 1560 (1957).
 P. L. Southwick and L. L. Seivard, J. Amer. Chem. Soc., 71, 2532 (1949);
 P. L. Southwick and R. T. Crouch, *ibid.*, 75, 3413 (1953);
 P. L. Southwick, J. Org. Chem., 21, 1087 (1966).

TABLE I¹

m

			I line							
			required at							
			room temp							
			for sepn of	2,3-Pyr-						
α -Keto acid			pyrrolidine-	rolidine-				Мр,	Yield,	
or ester	Aldeliyde	Amine	dione, hr	dione	R	Rı	\mathbf{R}_2	°C	%	Formula ^k
Oxalacetic ester	p-Nitrobenzaldehyde	<i>p</i> -Toluidine	24	1	CO ₂ C ₂ H ₅	C6II4NO2-p	C6H4CH3-p	196–198 ^j	32	C20H18N2O6
Oxalacetic ester	<i>p</i> -Nitrobenzaldehyde	2-Aminopyridine	24	2	$CO_{2}C_{2}H_{5}$	C6H4NO~p	C5H4N-a	$186 - 187^{j}$	40	C18H15N3O6
Ovalacetic ester	<i>p</i> -Nitrobeuzaldebyde	n-Chloronniline	48	3	CO ₂ C ₂ H ₆	Celle NO=2	CeH4Cl-2	211-212	60	CuHuCIN
Ovalacetic ester	n-Tolualdehyde	3-Aminonyridine	79	4	CO-C-H	CHICHAR	C.H.N.	211 212 292_22 <i>1</i> j	36	CuHu N.O.
Oralacetic ester	n Tolualdehyde	2-A minopyridine	94	5	CO-C-H-	C-H-CH- n	C.H.N. ~	105106	30	CuHuNO4
Ovalacetic ester	o Vapillin	2 Aminopyridine	19	0 e	CO.C.W.	HOC.H.OCH. a m	C-H-N	100 101	50	CUILIN NO.
Ovalacetic ester	o-vannin m Chlensbergaldebude	2-Aminopyridine	40	74	CO ₂ C ₂ H ₂	C-H-Cl =	CHN.	190-191	04 40	
Oxalacetic ester	p-Chlorobelizatienyde	2-Annopyname	24	1		Center-p	Official a	213-214/	42	CI8HISCIN204
Phenylpyruvic acid	Sobutyric aldenyde	Methylamine	12	8				119-120	51	ClaffinO2
Phenylpyruvic acid	Quinoline-4-aldehyde	Aniline	48	9	CeHs	C9H6N-4	CoHs	261-263	32	C25H18N2O2
Phenylpyruvic acid	Benzaldeliyde	4-Aminopyridine	72	10	CeHs	Cells	$C_{5}H_{4}N-\gamma$	277-278	31	C21 H16 N2O2
Phenylpyrnvic acid	Veratraldeliyde	Methylamine	72	11	C6H5	$C_6H_3(OCH_3)_2-m,p$	CH3	186187	30	C19H19NO4
Phenylpyrnvic acid	m-Methoxybenzaldehyde	p-Toluidine	18	125	C6H5	C6H4OCH2-m	C ₆ H ₄ CH ₃ -p	218 - 219	50	C24H21NO3
Phenylpyruvic acid	<i>m</i> -Hydroxybenzaldeliyde	p-Toluidine	6 days	13	C ₆ H ₅	C_6H_4OH-m	C6H4CH3-p	204-205	46	C23H19NO3
Phenylpyruvic acid	p-Nitrobenzaldehyde	p-Bromoaniline	72	14	C ₆ H ₅	C6H4NO2-p	C6H4Br-p	226-227'	42	C22H15BrN2O4
Phenylpyruvic acid	p-Nitrobenzaldehyde	p-Aminoacetophenone	12	15	C ₆ II ₅	C6H4NO2-p	C6H4COCH3-p	239 - 240	60	C24H18N2O5
Phenylpyruvic acid	Piperonal	<i>p</i> -Chloroaniline	4 days	16	C ₆ II ₅	$C_6H_3(OCH_2O)-3.4$	C_6H_4Cl-p	231 - 232	40	$C_{23}H_{16}ClNO_4$
Phenylpyruvic acid	p-Nitrobenzaldeliyde	p-Toluidine	18	17	C6H5	C6H4NO2-p	C6H4CH3-p	218 - 219	62	$C_{23}H_{18}N_2O_4$
Phenylpyruvic acid	<i>m</i> -Methoxybenzaldehyde	p-Aminoacetoplienone	10 days	18	C6H5	C6H4OCII3-m	C6H4COCH2-p	212 - 213	54	C25H21NO4
Phenylpyruvic acid	<i>m</i> -Hydroxybenzaldehyde	2-Aminopyridine	Immediately	19	C6H5	C6H4OH-m	C5H4N-a	220	45	C21H16N2O3
Phenylpyruvic acid	<i>m</i> -Hydroxybenzaldehyde	<i>p</i> -Nitroaniline	24	20	C6H5	C6H4OH-m	C6H4NO≁p	247248 ^j	32	C22H16N2O5
Phenylpyruvic acid	<i>m</i> -IIvdroxyhenzaldeliyde	<i>m</i> -Nitroaniline	24	21	C6H5	C ₆ H ₄ OH-m	C ₆ H₄NO≁m	234-235	26	C29H16N2O5
Phenylpyruvic acid	m-Hydroxybenzaldehyde	n-Chloroaniline	48	22 ^c	CeH5	CeH4OH-m	CeH4Cl-n	201-202	34	C22H16CINO3
Phenylpyruvic acid	m-Hydroxybenzaldehyde	n-Bromoaniline	24	23	CeHs	CeH4OH-m	CeH4Br-n	212	36	C=H16BrNO2
Phonylpyruvic acid	m-Hydroxybenzaldebyde	n-Toluidine	24	24d	C.H.	C.H.OH.m	C.H.CH. 7	226-227	28	CarHuNOr
Phenylpyrivic acid	m-Hydroxybenzaldeliyde	<i>p</i> Iodoaniline	72	25	Celle	CeHiOH-m	C.H.L.m	220 221	26	CarHisINO
2.4 Dimethoxyphenylnyruvie aeid	m Nitrobenzuldelude	p Totounnine p-Toluidino	99	20	C.H.(OCH.), mm	C-H-NO- m	C H C H m	200	50	C.H.N.O.
2.4. Dimethors phonel purpuy is not	p-Nitrobengaldelude	Apilino	14 Jana	20	$C H_{2}(O C H_{2}) = m \pi$	CHINO -		201-202	45	C H N O
2.4. Dimethoxyphenylpynivic acid	<i>p</i> -Nitrobensaldeliyde	A Chlorennilin e	19 days	21	$C_{13}(OCH) \neq m, p$	C II NO		204-203	-10	C H CIN O
3,4-Dimethoxyphenylpyruvic acia	<i>p</i> -Introbenzaldenyde	p-Chloroannine	12 days	20	$C_{6}H_{3}(OCH_{3}) \ge m, p$	C6H4NO2-p		227-228	37	C24H19CHN2O6
3,4-Dimethoxyphenylpyruvic acid	o-vaniiin	p-10mane	o days	29	$C_6H_3(OCH_3) \ge m_p$	HUC6H3UCH3-0.m	C6H4CH2-p	247-248	40	C26F125NU6
3.4-Dimethoxyphenylpyruvic acid	o-vanilin	p-lodoaniline	24	30	$C_6H_3(OCH_3)_2-m.p$	HOC6H2OCH2-0,m	C_6H_4I-p	264	25	C25H22INU6
3.4-Dimethoxyphenylpyruvic acid	o-Vanillin	<i>m</i> -Toluidine	72	312	$C_6H_3(OCH_3)_2-m,p$	HOC6H3OCH3-0,m	C6H4CH3-m	237	20	C26H25NO6
3,4-Dimethoxyphenylpyruvic acid	o-Vanillin	2-Aminopyridine	Immediately	32	$C_6H_3(OCH_3)_2-m_p$	HOC ₆ H ₃ OCH ₃ -0,m	C₅H₄N-α	220	30	C24H22N2O6
3,4-Dimethoxyphenylpyruvic acid	o-Vanillin	3.4-Dimethylaniline	72	33	$C_6H_3(OCH_3)_2-m,p$	HOC ₆ H ₃ OCH ₃ -o,m	$C_6H_3(CH_3) - m.p$	265	33	$C_{27}H_{27}NO_{6}$
3.4-Dimethoxyphenylpyruvic acid	o-Vanillin	Methylamine	7 days	34	$C_8H_3(OCH_3) - m, p$	HOC6H3OCH3-,om	CII ₃	245^{j}	14	$C_{20}H_{21}NO_6$
3,4-Dimethoxyphenylpyruvic acid	o-Vanillin	<i>m</i> -Bromoaniline	72	35	$C_6H_3(OCH_3)_{2}-m_p$	HOC6H2OCH3-0.m	C6H4Br-m	238	40	C25H22BrNO6
3,4-Dimethoxyphenylpyruvic acid	Veratraldehyde	2-Aminopyridine	7 days	36	$C_6H_3(OCH_3)_{2-}m,p$	$C_6H_3(OCII_3)_2-m, p$	C₅H4N-α	168	31	C25H24N2O6
3.4-Dimethoxyphenylpyrnvic acid	<i>p</i> -Anisaldelıyde	<i>p</i> -Chloroaniline	24	37	$C_6H_3(OCH_3)_{2-}m,p$	C6H4OCH3-p	C_6H_4Cl-p	185	13	C25H22ClNO5
3,4-Methylenedioxyphenylpyruvic	ø-Vanillin	3.4-Dimethylaniline	24	38^{g}	C6H3(OCH2O)-3,4	HOC6H3OCH3-0,m	$C_6H_3(CH_3)_2-m,p$	280 [;]	22	$C_{26}H_{23}NO_{6}$
acid										
Benzoylpyruvic ester	<i>p</i> -Nitrolienzaldehyde	<i>p</i> -Toluidine	4 days	39^{h}	COC6H5	C6H4NO2-p	C6H4CH3-p	$249 - 250^{j}$	30	C24H18N2O5
Benzoylpyruvic ester	p-Nitrobenzaldeliyde	2-Aminopyridine	4 days	40	COC6H5	C6H4NO2-p	C₅H₄N-α	$211 - 212^{j}$	38	C22H15N3O5
Benzoylpyruvic ester	p-Nitrobenzaldehyde	Aniline	48	41	COC6IIS	C6H4NO2-p	CeHs	245 - 246	45	C23H16N2O5
Benzovlpvruvie ester	p-Nitrobenzaldehyde	<i>p</i> -Aminoacetophenone	24	42	COC6H5	CeH4NO~n	CeH4COCH3-7	264-265	30	C25H18N2O6
Benzovlovruvic ester	n-Nitrobenzaldehyde	n-Chloroaniline	22	43	COCeHs	CeH4NO~2	CeH4Cl-n	237-238	28	C23H15ClN2O5
Benzovlpyruvic ester	Benzaldelivde	n-Aminoacetophenone	18	44	COCelle	C.H.	C.H.COCIL.m	201 200	40	CarH10NO4
Ethyl ethoxalylpropionate	p-Chlorobenzaldebyde	Aniline	20	451	COCaHs	CaH4Cl-r	CeH:	150-151	57	C ₂₀ H ₁₈ ClNO ₄
Ethyl ethoxalylpropionate	n-Nitrohenzaldehyde	2-Aminopyridine	22	46	COCH	C.H.NO. m	CHN	104-105	59	CuHI7N2Oc
Ethyl ethoxalylpropionate	n-Nitrobenzaldaluda	Aniline	24	47	COCH	C.H.NO	C.H.	194-199	50	CmHinN-Oc
Ethyl ethovalylpropionate	a-Nitrohenzel-Johnson	n-Toluiding	27	19	COCH	CHINO -		240 165	04 50	Callan 206
Ethyl othovalulpropionate	m Nitrobongal dobudo	<i>p</i> -roluiding	24	40	COCH	OBLANU2-0		100	00 07	C. H. N.O.
E thul other aluge and a second second	Manulfopenzaldenyde	p-roluidir-	24 94	49	COCH	$C_{6}H_{4}NO_{7}m$	U6H4CH3-p	235'	25	C 1 H 20 N 206
Ethyl ethorolylpropionate	Papeal-abud-		24	50	COCH	C6H4NO2-0	C H NC	155	37	C 1 H 20 IN 20 6
E thyr ethoxalypropionate	m Nitrohong-11-1	m-initroaniine	.24	51		Calls	\bigcup_{6} H4NU ₂ -m	195	25	C 118 N 206
E myr etnoxarytpropionate	m-murobenzaidenyde	25 mme	<u> 24</u>	52		C_6H4NO_2-m	C6H5	102-164	21	€ 20 II 18 IN 2U6

 $^{a}\lambda_{max}$ (log ϵ) in MeOH, 285 (4.09), 325 (4.04). b 280 (3.82), 305 (3.9). c 285 (4.22), 307 (3.3). d 285 (4.15), 305 (4.18). e 270 (4.25), 280 (4.25), 320 (4.32). f 285 (4.09), 327 (4.4). g 285 (3.64), 330 (3.91). h 265 (4.22), 355 (4.15). i 295 (3.29). j Decomposition. k All analyses for C, H. i See Scheme I.

TABLE II

2.3-Dioxo-				
pyrrolidine	Derivative	Mp. °C		
1	Methyl ether	126 - 127		
2	Methyl ether	143 - 144		
12	Methyl ether	125		
23	Methyl ether	142 - 143		
4	Acetyl	$224 - 225^{b}$		
14	Acetyl	211 - 212		
32	Acetyl	216		
37	A cetyl	234 - 235		
2	Benzoyl	194 - 195		
15	Benzoyl	225 - 226		
24	Benzoyl	215		
20	Benzoyl	216 - 217		
2	Quinoxaline	205 - 206		
7	Quinoxaline	263 - 264		
12	Quinoxaline	220-221 ^b		
23	Quinoxaline	277 - 278		
38	Quinoxaline	262 - 263		
6	2,3-Dinitrophenyl- hydrazone	241-242		
48	Phenylhydrazone	172 - 173		
47	Phenylhydrazone	169 - 170		
2	Oxime	249-250		
48	Oxime	122 - 123		
47	Oxime	242 - 243		
2	Anil	253 - 254		
2 Carbethoxy to		197-198		
	carbmethoxy			

^a All analyses for N. ^b Decomp.

Analogs of the 2,4-pyrrolidinediones described have been reported to be useful as sedatives and antispasmodics³ and to possess an anticonvulsant activity.⁴ 3,4-Pyrrolidinediones have been little investigated.

$\begin{array}{c} \operatorname{RHC} & \longrightarrow & \operatorname{C} \\ O = & C \\ O = & C \\ N \\ C \\ H_2 \\ C \\ H_2 \\ C \\ H_3 \end{array}$	$\begin{array}{c} O = C - C = O \\ H_5C_2OOCHC \\ N \\ R \end{array}$
53 , $R = C_6 H_5$	55 , R = C_6H_5
54 , $R = C_6 H_3(OCH_2O)(3, 4)$	56 , R = $C_6H_4CH_{3}$ - <i>o</i>

In preliminary pharmacological testing a number of 2,3-pyrrolidinediones were tested against Staphylococcus aureus (resistant strain), Klebsiella pneumoniae, Streptococcus aureus, Trichomonas foetus, Candida albicans, and T. mentagrophytes.

4-Carbethoxy-5-(p-chlorophenyl)-1-phenyl-2,3-pyrrolidinedione⁵ and the dione **2** were active against *T*. foetus in the *in vitro* screen to a dilution of 15-39 μ g/ml while 4-carboxy-2-(p-chlorophenyl)-3-phenyl-7,8-benzo-(h)quinoline⁵ was active against *T*. foetus and Streptococcus aureus at 15-39 μ g/ml. The other compds failed to show any appreciable antimicorbial activity.

Experimental Section

2,3-Pyrrolidinediones.—Equimolar quantities of the α -keto acid or ester, the aldehyde, and amine were dissolved in EtOH and the soln was refluxed for 40-45 min and then kept at room

Solvent and shape	
of crystals	Formula ^a
Aq EtOH	$C_{21}H_{20}N_2O_6$
EtOH	$C_{19}H_{17}N_{3}O_{6}$
EtOH	$\mathrm{C}_{25}\mathrm{H}_{23}\mathrm{NO}_3$
EtOAc-petr ether, plates	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{NO}_{3}\mathrm{Br}$
EtOH, white needles	$C_{21}H_{20}N_2O_5$
EtOH, white needles	$C_{24}H_{17}BrN_2O_5$
PhH-petr ether prisms	$C_{26}H_{24}N_2O_7$
EtOAc needles	$\mathrm{C}_{27}\mathrm{H}_{24}\mathrm{ClNO}_{3}$
EtOH	$C_{25}H_{19}N_{3}O_{7}$
EtOH	$C_{31}H_{22}N_2O_6$
PhH-petr ether needles	$C_{31}H_{22}N_2O_5$
EtOAc, needles	$C_{36}H_{24}N_2O_7$
PhH	$C_{24}H_{19}N_5O_4$
AcOH, orange needles	$C_{24}H_{19}ClN_4O_2$
EtOH, prisms	$C_{30}H_{25}N_{3}O$
MeOH, yellow needles	$\mathrm{C}_{28}\mathrm{H}_{20}\mathrm{BrN}_{3}\mathrm{O}$
MeOH, yellow needles	$C_{32}H_{27}N_{3}O_{4}$
AcOH	${ m C_{25}H_{22}N_6O_9}$
MeOH, vellow prisms	C27H26N4O5
EtOAc-petr ether, yellow	C26H24N4O5
needles	-20244-0
EtOH	$C_{18}H_{15}N_4O_6$
EtOAc-petr ether needles	$C_{21}H_{21}N_{3}O_{6}$
EtOH, prisms	$C_{20}H_{19}N_{3}O_{6}$
EtOH	$C_{24}H_{20}N_4O_5$
PhH	$\mathrm{C_{17}H_{13}N_{3}O_{6}}$

temp. The 2,3-pyrrolidinedione which sepd was filtered, washed with EtOH, and crystd usually from EtOH or AcOH (Table I).

The prepn of derivatives of 2,3-pyrrolidinediones such as Me ethers, Ac, Bz, and quinoxaline derivatives, oximes, 2,4-dinitrophenylhydrazones, and anils and the conversion of carbethoxy to carbmethoxy group was carried out as reported earlier.^{6,7}

The diones obtd from oxalacetic ester, phenyl-, 3,4-dimethoxyphenyl-, and benzoylpyruvic acids give reddish, greenish, blueish green and blood red colorations, respectively, with FeCl₃. The ir spectra² of the diones exhibited bands between 1780 and 1765 cm⁻¹ and between 1710 and 1720 cm⁻¹.

4-Benzylidene-1- α -pyridyl-5-p-nitrophenyl-2,3-pyrrolidinedione.—A mixt of 2 (3 g) and freshly distd PhCHO (2 g) was added to HCl (50 ml, 25%) contg some EtOH and the mixt was refluxed with stirring for 8 hr. After cooling for several hr, the solid which sepd was filtered (900 mg) and crystd from EtOH as pale yellow needles, mp 222-223°. Anal. (C₂₂H₁₅N₈O₄) C, H.

4-Benzyl-1- α -pyridyl-5-*p*-nitrophenyl-2,3-pyrrolidinedione. The above dione (1 g) was added over a period of 10 min to a soln of NaBH₄ (110 mg) in EtOH (6 ml) and allowed to stand for 1 hr. After decompn the solvent was evapd under reduced pressure, leaving a white solid which was washed with H₂O and crystd from EtOH in colorless needles (120 mg), mp 213-214° dec. Anal. (C₂₂H₁₇N₃O₄) C, H, N.

2,4-Pyrrolidinediones.—Ethyl formate (0.108 mole) was dropped into a stirred and chilled suspension of NaOEt (0.1 mole) in Et₂O (100 ml) and stirred for 1 hr. (*N*-Phenacetyl)benzyl-aminoacetate (0.1 mole) was dropped in, and the mixt was stirred for 3 hr and allowed to warm to room temp. It was extd with H₂O and acidified to give **53**.⁸

Similarly, with N-3,4-methylenedioxyphenylbenzylaminoacetate, 54, mp 226-227° from EtOH, was obtd. Anal. ($C_{18}H_{13}NO_4$) C, H.

3,4-Pyrrolidinediones.—A mixt of diethyl *N*-phenyldiglycolamidate (6.7 g) and diethyl oxalate (3.7 g) was added to NaOEt (1.5 g of Na in 50 ml of EtOH) and warmed gently when a vigorous reaction set in with the formation of a yellow disodium salt of 55.

(6) J. R. Merchant and V. Srinivasan, Recl. Trav. Chim. Pays-Bas, 81. 144 (1962).

(7) J. R. Merchant, R. J. Shah, and R. M. Bhandarkar, *ibid.*, **81**, 131 (1962).

(8) J. A. King and F. H. McMillan, J. Amer. Chem. Soc., 72, 1238 (1950).

⁽³⁾ German Patent 695,330; Chem. Abstr., **35**, 3647 (1941); Swiss Patent 213,347; Chem. Abstr., **36**, 4974 (1942); U. S. Patent 2,328,232; Chem. Abstr., **38**, 753 (1944).

⁽⁴⁾ L. A. Miller, U. S. Patent 3,004,037; Chem. Abstr., 56, 15485 (1962).
(5) Prepared earlier in our laboratory; J. R. Merchant and R. M. Bhandarkar, J. Indian Chem. Soc., 40, 353 (1963).

After heating at 100° for 3-4 hr the salt was dissolved in cold H_2O and washed with Et_2O when 55 (7.5 g) sepd as yellow prisms. It was crystd from EtOH, mp 137-138°. Anal. (C₁₆H₁₇NO₆) C, H, N.

Similarly, condensation of diethyl N-o-tolyldiglycolamidate (3 g) and diethyl oxalate (1.85 g) gave 56 (1 g) on acidification of the soln of the Na salt. It was crystd from EtOH, mp 140-141°. Anal. (C17H19NO6) C, H.

Acknowledgment.—We are grateful to Smith Kline & French Laboratories, Philadelphia, Pa., for carrying out the pharmacological testing of the compounds.

Preparation of Some Trimethylpentacyclo-[5.4.0.0^{2.6}.0^{3.10}.0^{5.9}]undecan-8,11-dione Derivatives

A. W. Chow,* D. R. JAKAS, AND J. R. E. HOOVER

Smith, Kline & French Laboratories, Philadelphia, Pennsylvania 19101

Received June 15, 1971

The prophylactic use of 1-aminoadamantane against Asian influenza in man has been described.¹ It appeared interesting to determine what other "cage" systems might combine a desirable size and shape with an unsubstituted amino function to produce structures having antiinfluenzal activity. The preparation of derivatives of the birdcage hydrocarbon,² homocubane³ and noradamantane,⁴ has already been reported from these laboratories. We now wish to report the preparation of amino derivatives of pentacyclo 5.4.0.0^{2.6}. 0^{3,10}.0^{5,9}]undecane-8,11-dione.

This cage system $(R_1 = R_2 = H)$ was first prepared by Cookson and coworkers by the photocyclization of the Diels-Alder adduct of p-benzoquinoue and cyclopentadiene.⁵ In the present study, access to the cage system with an amino function was accomplished by using cyclopentadienes having a carboxyl group at the appropriate position in a reaction sequence paralleling that described by Cookson, et al. The resulting cage acid was converted to the amine in the last step.

To obtain the 3-amino derivative of this system, the Me ester of α -camphylic acid⁶ was condensed with pbenzoquinone to give the endo adduct 2a which, upon uv irradiation in acetone, closed to the saturated diketone **3a**. Hydrolysis of **3a** with 48% HBr gave the free carboxylic acid 3b which was converted to the amine 4a via a modified Curtius reaction.⁷

Similarly, β -camphylic acid (1b)⁶ was condensed with p-benzoquinone to give adduct 2b. Irradiation of 2b gave the cage acid 3c which was characterized as the Et ester **3d**. This (**3c**) was converted, *via* the modified Curtius reaction, to the amine 4b. The possibility that photolysis of **2a** and **2b** had resulted in dimerization⁸ rather than intramolecular cyclization was ruled out by

(7) W. R. Vaughan and J. L. Spencer, J. Org. Chem., 25, 1160 (1960). (8) C. H. Krauch and W. Metzner, Chem. Ber., 98, 2106 (1965).

4b, $R_1 = H$; $R_2 = NH_2$

determining the molecular weights (mass spectra) of the condensation products 3a and 3c.

Biological Activity.-The cage amines and several of the intermediates described were tested in vitro (plaque inhibition)⁹ for antiinfluenza activity. The amines were also tested for activity against influenzal pneumonitis in mice.¹⁰ Compds 2b, 4a, and 4b showed no activity in vitro against influenza A (WSN), parainfluenza 1 (Sendai), and influenza A2 (Ann Arbor), but 3a and 3c had marginal activity against influenza A (WSN). Compd 4a showed marginal activity against influenzal pneumonitis [influenza A2 (Ann Arbor), well-tolerated dose in mice, 100 mg/kg; increase in per cent survival, 10%; increase in mean survival days, 1.4 days]. Compd 4b was inactive against both influenza A_2 (Ann Arbor) and A_1 (swine) in mice.

Experimental Section

General.-Irradiation was carried out with a 250-W Hanovia medium-pressure Hg lamp in Pyrex apparatus. All mp (Thomas-Hoover apparatus) and bp are uncorrected.

Methyl 1,4,4a,5,8,8a-Hexahydro-4,9,9-trimethyl-5,8-dioxo-1,4methanonaphthalene-1-carboxylate (2a).-Attempts to condense α -camphylic acid with p-benzoquinoue returned only unreacted starting material. Consequently, the condensation was carried out using the Me ester. Methyl α -camphylate was prepd in 85% yield by methylation of α -camphylic acid¹¹ with CH₂N₂. A soln of 10.8 g (64 mmoles) of methyl α -camphylate and 7.0 g (64 mmoles) of recrystd p-benzoquinone in 130 ml of C_6H_6 was refluxed in the dark under N_2 for 22 hr. Upon removal of C_6H_6 in vacuo, the residual oil solidified. The crude product was crystd from aq MeOH to give 9.48 g (54%) of a yellow solid: mp 110-112°; nmr (CDCl₃), 0.82 (3 H, s), 1.02 (3 H, s), and 1.35 (3 H, s), CH₃ groups, 3.22 and 3.95 (2 H as AB quartet, J = 9 Hz), C_{4a}H and C_{8a}H, 3.87 (1 H, s) OCH₃, 5.84 and 6.23 (2 H as AB quartet, J = 6 Hz), C₂H and C₃H, 6.63 (2 H, s) C₅H and C₇H. Anal. (C₁₆H₁₈O₄) C, H.

4,4,5-Trimethyl-8,11-dioxopentacyclo [5.4.0^{2,6}.0^{3,10}.0^{5,9}] undecane-3-carboxylic Acid (3b).—A soln of 1.9 g (6.94 mmoles) of adduct 2a in 450 ml of EtOAc was irradiated for 24 hr under The colorless soln was concd in vacuo to a small vol to give N2.

1a, $R_1 = COOCH_2$; $R_2 = H$ **1b.** $R_1 = H$; $R_2 = COOH$

⁽¹⁾ G. G. Jackson, R. L. Muldoon, and L. W. Akers, Antimicrob. Ag. Chemother., 1963, 703 (1964).

⁽²⁾ R. J. Stedman, A. C. Swift, and J. R. E. Hoover, Tetrahedron Lett., 2525 (1965).

⁽³⁾ G. L. Dunn, V. J. DiPasquo, and J. R. E. Hoover, ibid., 3737 (1966). (4) B. R. Vogt and J. R. E. Hoover, ibid., 2841 (1967).

⁽⁵⁾ R. C. Cookson, E. Crundwell, and J. Hudec, Chem. Ind. (London). 1003 (1958).

⁽⁶⁾ J. R. Lewis and J. L. Simonsen, J. Chem. Soc., 734 (1936).

⁽⁹⁾ E. C. Herrmann, Jr., Proc. Soc. Exp. Biol. Med., 107, 142 (1961).

⁽¹⁰⁾ R. Stewart, "Methods in Drug Evaluation," P. Mantegazza and F. Piccinini, Ed., North-Holland Publishing Co., Amsterdam, 1966, p 379.

⁽¹¹⁾ α -Camphylic acid can also be prepd from the β isomer by heating the latter at 175° for 15 hr in a closed system.